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Abstract

A computational procedure is presented for evaluating the sensitivity coefficients of the thermomechanical response

of welded structures. Uncoupled thermomechanical analysis, with transient thermal analysis and quasi-static me-

chanical analysis, is performed. A rate independent, small deformation thermo-elasto-plastic material model with

temperature-dependent material properties is adopted in the study. The temperature field is assumed to be independent

of the stresses and strains. The heat transfer equations emanating from a finite element semi-discretization are inte-

grated using an implicit backward difference scheme to generate the time history of the temperatures. The mechanical

response during welding is then calculated by solving a generalized plane strain problem. First- and second-order

sensitivity coefficients of the thermal and mechanical response quantities (derivatives with respect to various thermo-

mechanical parameters) are evaluated using a direct differentiation approach in conjunction with an automatic dif-

ferentiation software facility. Numerical results are presented for a double fillet conventional welding of a stiffener and a

base plate made of stainless steel AL-6XN material. Time histories of the response and sensitivity coefficients, and their

spatial distributions at selected times are presented.

� 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Welding has become a prevalent mechanical joining methodology in various industries because of its

many advantages over other joining methods including design flexibility, cost savings, reduced overall

weight, and enhanced structural performance. However, the local high temperature in a welding process
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induces residual stresses and distortions (Gunnert, 1955; Terai, 1978; Shim et al., 1992; Connor, 1987).

These residual stresses and distortions are undesirable in general since they have bad effects on the

structural performance. Although a number of approaches have been proposed to minimize the residual

stresses and distortions, including selecting the type of welding, controlling the welding process parameters,
and modifying the structural configuration (Burak et al., 1977, 1979), the residual stresses are inevitable in

essence.

Numerical simulation techniques to study the various phenomena associated with welding have been

developed. For example, weld-pool physics, heat and fluid flow, heat source–metal interactions, weld so-

lidification microstructures, phase transformations, and residual stresses and distortions have been studied.

Recent studies of residual stresses and distortions in welded structures are reported in Goldak and Bibby

(1988), Tekriwal and Mazumder (1991), Argyris et al. (1982), Hibbitt and Marcal (1973), Braudel et al.

(1986), Oddy and Goldak (1990), Bertram and Ortega (1991), Wang and Murakawa (1998), Roelens and
Maltrud (1993), Rybicki and Stonesifer (1979) and Chakravati et al. (1986). In these numerical studies of

welding, the accuracy of temperature-dependent material properties plays an important role in the accuracy

of predicted residual stresses.

Since current measurement technology does not allow the accurate determination of the material

parameters that are used in the analytical models, it is useful to assess the sensitivity of the thermome-

chanical responses of welded joints to variations in the various material parameters. The present study

focuses on this topic. Specifically, the objective of this paper is to present a computational procedure for

evaluating the sensitivity coefficients of the quasi-static response of welded joints. Uncoupled thermome-
chanical analysis is performed. A rate independent, small deformation thermo-elasto-plastic material model

with temperature-dependent material properties is adopted.

Numerical results are presented for the temperature––and residual stress––time histories and their

sensitivity coefficients for a double fillet conventional welding of a stiffener and a base plate made of

stainless steel AL-6XN. A two-dimensional generalized plane strain model is used, which is adequate for

predicting the residual stresses. However, the prediction of welding distortions requires a global three-

dimensional model (Brown and Song, 1992), which is beyond the scope of the present study.
2. Finite element equations

Uncoupled thermomechanical analysis is performed. The temperature field is assumed to be independent

of stresses and strains. The heat transfer equations emanating from a finite element semi-discretization are

integrated using an implicit backward difference scheme to generate the time history of the temperatures.

The mechanical response during welding is then calculated by solving a generalized plane strain problem. A

rate independent, small deformation thermo-elasto-plastic material model with temperature-dependent

material properties is adopted in the study. The governing equations for the thermal and mechanical

analyses are summarized subsequently.

2.1. Thermal analysis

The governing equation for transient heat transfer analysis is given by:
qcp
dT
dt

ðr; tÞ ¼ �r � qðr; tÞ þ Qðr; tÞ ð1Þ
where q is the density of the flowing body, cp is the specific heat capacity, T is the temperature, q is the heat

flux vector, Q is the internal heat generation rate, t is the time, r is the coordinate in the reference con-
figuration, and r is the spatial gradient operator.
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The nonlinear isotropic Fourier heat flux constitutive relation is used:
q ¼ �krT ð2Þ

where k is the temperature-dependent thermal conductivity.

The rate of internal heat generation by the welding torch is modeled with a ‘‘double ellipsoidal’’ power

density distribution proposed by Goldak et al. (1984), and is described by the following equation:
Q ¼ 6
ffiffiffi
3

p
Qwgwf

abcp
ffiffiffi
p

p exp
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a2

�
þ 3y2
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where Qw (2680.35 W/mm3) is the welding heat input; gw (1.0) is the welding efficiency, x, y, and z are the

local coordinates of the double ellipsoid model aligned with the weld fillet; a (5
ffiffiffi
2

p
mm) is the weld width; b

(5
ffiffiffi
2

p
mm) is the weld penetration; c is the weld ellipsoid length (c ¼ a and f ¼ 0:6 before the torch passes

the analysis region, and c ¼ 4a and f ¼ 1:4 after the torch passes the analysis region); v (6.35 mm/s) is the

welding torch speed. The numbers in the parentheses are the values which are used in the present study.

The initial temperature field is given by
T ¼ 0T in the entire volume V ð4Þ

where 0T is the prescribed initial temperature. The following boundary conditions are applied on the

surface:
T ¼ �TT on the surface AT ; with prescribed temperatures ð5Þ

q ¼ �qq on the surface Aq; with prescribed heat fluxes ð6Þ

where �TT and �qq represent the prescribed temperature and temperature-dependent surface flux, respectively.

The application of finite element discretization in conjunction with a weak formulation of the problem
yields the element residual vector R as follows:
RðnTÞ ¼
X
V

BTkBnT

�
�NTQþNTNqCp

nT� n�1T
nt � n�1t

�
WJ þ

X
Aq

NT�qqwj ð7Þ
where the left superscripts (n� 1) and n refer to the time increments n�1t and nt, T is element nodal tem-

perature vector, N and B are the usual matrices which interpolate the temperature T and temperature

gradient rT in an element; J and j are the volume and area Jacobian component corresponding to the

weight coefficients W and w of the Gaussian quadrature formulas for volume and surface integration.

2.2. Mechanical analysis

The stress equilibrium equation in the Lagrangian frame is given by:
r � Sþ b ¼ 0 in V ð8Þ

where S is the second-order stress tensor, and b is the body force vector. The boundary conditions are:
u ¼ �uu on surface Au ð9Þ

Sn ¼ �tt on surface At ð10Þ

where �uu is the prescribed displacement vector on surface Au, �tt is the prescribed traction vector on surface At,

and n is the unit outward normal to the surface At. The total strain is the Green�s strain:
E ¼ 1

2
fruþ ½ru
Tg ð11Þ
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Because of the symmetry, the stress tensor S and strain tensor E are commonly represented by the

vectors r and � (usually called engineering stress and strain) for computational efficiency. The initial

conditions are:
u ¼ 0u ð12Þ

�p ¼ 0�p ð13Þ

�q ¼ 0�q ð14Þ

where �p is the plastic strain vector and �q is the equivalent plastic strain.

Assuming small deformation thermo-elasto-plasticity, the total strain vector � is decomposed into the

elastic strain vector �e, the plastic strain vector �p and thermal strain vector �t:
� ¼ �e þ �p þ �t ð15Þ

The stress–strain relationship is:
r ¼ C�e ¼ C½�� �p � �t
 ð16Þ

where C is the temperature-dependent material stiffness tensor.

A generalized plane strain condition is assumed to account for the out-of-plane expansion in the model.
The out-of-plane strain �z is assumed to have a linear distribution over the analysis plane:
�z ¼ e� x/y þ y/x ð17Þ
where e is the out-of-plane strain at the origin of the coordinate system and /x and /y are the strain

variations in the y and x directions, respectively.

Similarly to the thermal analysis, the application of the finite element discretization in conjunction with a

weak formulation yields the element residual R (see, for example, Simo and Taylor, 1985; Tekriwal and
Torch1

3.
5"

Welding
direction

x

y

z

2"

Torch2

L

12”

2”

Fig. 1. Welding conditions for double fillet welding.
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Mazumder, 1991; Argyris et al., 1982; Hibbitt and Marcal, 1973; Braudel et al., 1986; Michaleris et al.,

1995; Rybicki and Stonesifer, 1979; Shim et al., 1992; Bertram and Ortega, 1991).
Fig. 2.

coeffici
RðnUÞ ¼
X
V

½BTnr �NTb
WJ �
X
At

NT�ttwj ð18Þ
where
nr ¼ n�1r þ Dr ð19Þ
3. Sensitivity analysis

The sensitivity coefficients, which are the derivatives of the various thermal and mechanical response

quantities with respect to the material parameters, are evaluated by using the direct differentiation method

in conjunction with the automatic differentiation software facility ADIFOR (Carle et al., 1998; Bischof

et al., 1996, 1992). The sensitivity coefficients obtained by ADIFOR were validated by comparing them

with those obtained by finite difference approximations. The sensitivity information can be used to (see, for
example Saltelli et al., 2000): (a) assess the importance of the parameters used in describing the thermal and

mechanical properties of the material on the time histories of the temperature and residual stresses. This,
Temperature-dependent thermal and mechanical properties for AL-6XN: (a) conductivity k, specific heat cp, and convection

ent h; (b) elastic modulus E, yield strength ry , Poisson�s ratio m, and thermal expansion coefficient a.
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Fig. 4. Time histories of the temperature and von-Mises stress for the welded joint shown in Fig. 1.
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in turn, can help both in refining the material models and in the design of improved materials; (b) assess the

effects of uncertainties in the material parameters on the time-history response of welded structures; and

(c) predict the changes in the time-history response of welded structures due to changes in the material

parameters.
4. Numerical studies

The computational procedure described in the preceding sections is applied to study the temperature and
residual stress-time histories and their sensitivity coefficients for a double fillet conventional welding of a

stiffener and a base plate made of stainless steel AL-6XN (see Fig. 1). The variations of the thermal and

mechanical properties of AL-6XN with temperature are shown in Fig. 2. Each of the thermal and

mechanical properties is approximated by the piecewise linear variation shown in Fig. 2.
4.1. Welding process and welding conditions

The schematic welding configuration used in the present study is shown in Fig. 1. The width (B) of the
base plate is 12 in., the height of the stiffener is 2 in. and the thickness of each of the base plate and stiffener

is 1/8 in.

Double fillet welding is used with one welding gun on either side of the stiffener. The guns are 3.5 in.
offset from each other with one gun following the other as shown in Fig. 1. The details of the welding

process and welding conditions are described in Deo and Michaleris (2003).
Fig. 5. Snapshots of the normalized temperature and von-Mises stress for the welded joint shown in Fig. 1.
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4.2. Finite element model

The finite element model used in each of the thermal and mechanical analyses is shown in Fig. 3. The

model has 388 8-node quadratic elements and 1343 nodes. In the thermal analysis all the free surfaces are
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taken as convective surfaces. In the mechanical analysis the constraints shown in Fig. 3 are applied.

Convergence studies were performed by using successively refined grids. The results obtained by the model

shown in Fig. 3 were found to be in close agreement with those obtained by finer grids. Typical results are
-250

0

250

500

3
2
5
1
4

.1 1 10 100 3000
Time, sec.

i

-800

-400

0

400

800

.1 1 10 100 3000
Time, sec.

-80

0

80

160

240

320 1
2
3
4
5

.1 1 10 100 3000
Time, sec.

i

-160

0

160

320

.1 1 10 100 3000
Time, sec.

-500

-250

0

250

500

4
3
2
1

TimeTime, sec.
.1 1 10 100 3000

i

-600

-300

0

300

600

900

.1 1 10 100 3000
Time, sec.

∂σm

∂Εi

Εi

∂σm


∂σy

σy

αi

∂σm

∂αi

0i

0i

1 4

Fig. 7. Time histories of the first-order sensitivity coefficients of von-Mises stress with respect to mechanical properties Ei, ry0i, and ai

for the welded joint shown in Fig. 1.
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shown in Figs. 4 and 5 for the response studies, and in Figs. 6–11 for the sensitivity studies, and are des-

cribed subsequently.
4.3. Response studies

The time histories of the temperature and von-Mises stress at six points are shown in Fig. 4. The

maximum temperatures occur at point 1 at time t ¼ 14:55 s, and at point 4 at time t ¼ 0:55 s. The maximum
Fig. 8. Snapshots of the first-order sensitivity coefficients of the temperature with respect to thermal properties k4 and cp4 for the welded
joint shown in Fig. 1.

Fig. 9. Snapshots of the first-order sensitivity coefficients of von-Mises stress with respect to mechanical properties E5 and ry05 for the

welded joint shown in Fig. 1.
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Fig. 11. Snapshots of the second-order sensitivity coefficients of the temperature with respect to k3k3, cp2cp2 and cp2k3 for the welded

joint shown in Fig. 1.
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values of the von-Mises stress occur near points 1 and 4 at t ¼ 3000 s. Contour plots for the normalized

temperature at t ¼ 0:4, 0.55 and 14.55 s, and for the von-Mises stress at t ¼ 0:56, 14.73, and 3000 s, are

shown in Fig. 5. Each contour plot is normalized with respect to the maximum absolute value of the

function represented, and consequently the contour intervals are bounded by 0 and 1. An examination of

Figs. 4 and 5 reveals that the maximum values of the temperature and von-Mises stress occur in the weld
zones.
5. Sensitivity studies

The time histories of the first-order sensitivity coefficients of the temperature with respect to the three

sets of parameters ki, cpi, and hi at points 1 and 4 are shown in Fig. 6. Corresponding time histories of the

first-order sensitivity coefficients of von-Mises stress with respect to the three sets of parameters Ei, ry0i and

ai at the same points are shown in Fig. 7. Each sensitivity coefficient is normalized by multiplying by the

same parameter, with respect to which the sensitivity is evaluated. Contour plots of the largest normalized

sensitivity coefficients oT=ok4 and oT=ocp4 at t ¼ 0:55, 2.51 and 14.55 s are shown in Fig. 8. Contour plots

for the largest sensitivity coefficients orm=oE5 and orm=ory05 at t ¼ 0:56, 22.43 and 3000 s are shown in Fig.
9. Time histories of the largest normalized second-order sensitivity coefficients of the temperature o2T=ok23 ,
o2T=oc2p2, and o2T=ocp2 ok3 at six points are shown in Fig. 10. Contour plots of the maximum second-order

sensitivity coefficients o2T=ok23 , and o2T=oc2p2, and of the mixed second-order sensitivity coefficients

o2T=ocp2 ok3, at t ¼ 0:4, 0.42, 0.48 s are shown in Fig. 11.
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An examination of Figs. 5–11 reveals:

1. The first-order sensitivity coefficients of the temperature with respect to the parameters k4, h2 and cp4 are
larger than those with respect to the other parameters in each category.

2. The maximum absolute value of the first-order sensitivity coefficients of T with respect to k4 and cp4
occur at the same point and nearly at the same time as those for T .

3. The first-order sensitivity coefficients of von-Mises stress rm with respect to the parameters E5, ry05, a3

and m1 are larger than those with respect to the corresponding parameters in each category.

4. The maximum absolute values of the first-order sensitivity coefficients of rm occur at different points, and

at different times from those of T .
5. The second-order sensitivity coefficients of the temperature with respect to k3 and cp2 are larger than the

second-order sensitivity coefficients with respect to the corresponding parameters in each category.
6. Concluding remarks

A computational procedure is presented for evaluating the sensitivity coefficients of the quasi-static

response of welded structures. Uncoupled thermomechanical analysis is performed. The temperature field is

assumed to be independent of stresses and strains. The heat transfer equations emanating from a finite

element semi-discretization are integrated using an implicit backward difference scheme to generate the time

history of the temperature. The mechanical response during welding is then calculated by solving a gene-

ralized plane strain problem. A rate independent, small deformation thermo-elasto-plastic material model

with temperature-dependent material properties is adopted in the study.

First- and second-order sensitivity coefficients of the thermal and mechanical response quantities are
evaluated by using a direct differentiation approach in conjunction with an automatic differentiation

software facility.

Numerical results are presented for a double-fillet conventional welding of a stiffener and a base plate

made of stainless steel AL-6XN material. Time histories of the response and sensitivity coefficients, and

their spatial distributions at selected times are presented. The first- and second-order sensitivity coefficients

can be used to generate taylor series approximations for the quasi-static response for welded joints with

slightly different material parameters.
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